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Abstract
We consider the six-vertex model on an N ×N square lattice with the domain
wall boundary conditions. Boundary one-point correlation functions of the
model are expressed as determinants of N × N matrices, generalizing the
known result for the partition function. In the free fermion case explicit
answers are obtained. The introduced correlation functions are closely related
to the problem of enumeration of alternating sign matrices and domino tilings.

PACS numbers: 05.50.+q, 02.30.Ik

1. Introduction

The six-vertex model was studied for both periodic [1, 2] and fixed boundary conditions
[3–6]. The particular example of fixed boundary conditions [7] of the model on an N × N

square lattice is the so-called domain wall boundary conditions (DWBC) [8]. Under special
restrictions on the vertex weights this model is related to the enumeration of alternating sign
matrices [9, 10] and domino tilings of Aztec diamonds [9].

The model with DWBC originally appeared in the context of investigation of norms of the
Bethe states in the framework of the quantum inverse scattering method (QISM) [11]. In the
last decade the six-vertex model with DWBC has found interesting applications in different
fields of physics and mathematics [12–16] due to the results of the papers [17, 18], where the
determinant formula for the partition function has been obtained and proved. This determinant
formula allowed several problems to be solved in combinatorics [10] which were standing for
a long time [19].

A wide range of problems such as refined enumeration of alternating sign matrices (ASM)
[20] and the arctic circle theorem [21, 22] can be solved only if the correlation functions of the
model are known. In general, the calculation of the correlation functions is a more complicated
problem than that of the partition function. Additional difficulties may arise due to the lack of
translation invariance caused by the fixed boundary conditions.

In this paper we will consider two kinds of one-point boundary correlation functions of the
six-vertex model with DWBC. The function of the first kind,G(M)

N , is the local state probability
on the boundary vertical edge and it may be called ‘boundary spontaneous polarization’.
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a b c

Figure 1. The six allowed types of vertices in terms of arrows (first row), lines (second row) and
spins (third row).
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Figure 2. One of the possible configurations in the model with DWBC in terms of (a) arrows and
(b) lines. (c) DWBC in terms of spins.

The function of the second kind, H(M)
N , describes the probability of the vertex being in a

specific state. For the model on an N × N square lattice we obtain representations for these
correlation functions as determinants of N × N matrices. These correlation functions are the
generalization of a boundary correlation function considered in [23].

There are three convenient ways for the description of the six-vertex model: (i) in terms
of arrows pointing into and away from each vertex; (ii) in terms of lines flowing through the
vertices; (iii) in terms of spins on the edges. The six types of vertices allowed in the model
are plotted in figure 1. A statistical (vertex) weight corresponds to each type of vertex. We
consider the six-vertex model with the vertex weights being invariant under the simultaneous
reversal of all arrows. Hence, there are three different vertex weights, a, b and c (see
figure 1).

The domain wall boundary conditions imply that all arrows on the top and bottom
of the lattice are pointing inwards while all arrows on the left and right boundaries are
pointing outwards (see figure 2(a)). It means that the solid lines flow from the top of the
lattice to the left boundary (see figure 2(b)). In figures 2(a) and (b) one of the possible
arrangements is presented. The domain wall boundary conditions in terms of spins are shown in
figure 2(c).

In the inhomogeneous model the vertex weights a, b and c are site dependent. To
introduce this dependence we will use two sets of the variables {λα} and {νk} that are in
one-to-one correspondence with the set of lines. The rows will be enumerated by Greek
indices α = 1, . . . , N and the variable λα corresponds to the αth row; the columns will be
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enumerated by Latin indices k = 1, . . . , N and the variable νk corresponds to the kth column.
This correspondence is shown in figure 2(b). Each statistical weight associated with the vertex
lying at the intersection of the αth row and kth column will depend on the pair of variables
(λα , νk). The parametrization that allows one to apply QISM is

a(λα, νk) = sinh(λα − νk + η)

b(λα, νk) = sinh(λα − νk − η)

c(λα, νk) = sinh 2η.

(1)

In the homogeneous limit all λα → λ and all νk → ν. All positive values of the vertex
weights, up to an overall scaling transformation, may be obtained by choosing both λ− ν and
η either real or pure imaginary.

Our calculations are based on the quantum inverse scattering method (QISM), reviewed
briefly in section 2. In section 3 we derive the reduction formulae for the boundary correlation
functionsG(M)

N andH(M)
N . The recursion relation for the partition function follows from these

formulae as a particular case. The determinant representation for G(M)
N and H(M)

N is obtained
from these reduction formulae in section 4. In the free fermion case the homogeneous limit
for these boundary correlation functions is calculated explicitly in section 5, while the general
case of the homogeneous limit is considered in section 6.

2. Formulation of the model within the QISM formalism

To apply the quantum inverse scattering method [11] we use the spin description of the model.
With each vertical line (column) and horizontal line (row) one associates the space C

2, with
spin-up and spin-down states forming a natural basis in this space. The total space of the
vertical lines is V = (C2)⊗N and the total space of the horizontal lines is H = (C2)⊗N . With
each vertex of the lattice one associates an operator acting in the full spaceV⊗H. This operator
is called the L-operator and it acts nontrivially only in a single horizontal space C

2 and in a
single vertical space C

2, while in all other spaces it acts as the unity operator. To distinguish
the spaces in which the L-operator acts nontrivially one can label it as Lαk and associate it with
the vertex being the intersection of the αth row and kth column. The matrix elements of the
L-operator (which is a 22N × 22N matrix) are either zeros or functions a(λα, νk), b(λα, νk),
c(λα, νk), defined in (1). Hence, the L-operator Lαk is a function of λα and νk , Lαk(λα, νk).
Since the L-operator acts nontrivially only in the direct product of a pair of two-dimensional
spaces, all its elements may be written in the compact form as

Lαk(λα, νk) =




a(λα, νk) 0 0 0

0 b(λα, νk) c(λα, νk) 0

0 c(λα, νk) b(λα, νk) 0

0 0 0 a(λα, νk)




[αk]

. (2)

This is the matrix with respect to the αth copy of C
2 in H and the kth copy in V , with the matrix

elements being trivial matrices in the rest of the copies of C
2 in V and in H. One can write the

L-operator in an alternative form with separated ‘horizontal’ and ‘vertical’ spaces, namely, as
a matrix with respect to the αth copy of C

2 in H with the operator matrix elements acting
nontrivially only in the kth copy of C

2 in V

Lαk(λα, νk) =
(

sinh
(
λα − νk + ησ zk

)
σ−
k sinh 2η

σ +
k sinh 2η sinh

(
λα − νk − ησ zk

)
)

[α]

(3)

where σ zk , σ±
k = 1

2

(
σxk ± iσyk

)
are Pauli matrices.
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The main object of QISM is the ‘vertical’ monodromy matrix Tα(λα) which is defined as
the ordered matrix product of the L-operators along the αth horizontal line:

Tα(λα) = LαN(λα, νN) · · · Lα1(λα, ν1) =
(
A(λα) B(λα)

C(λα) D(λα)

)
[α]

. (4)

All entries of the monodromy matrix Tα(λα) are operators acting in V and they depend on
the variables ν1, . . . , νN , i.e. A(λ) = A

(
λ; {νk}Nk=1

)
, etc. Obviously, instead of the ‘vertical’

monodromy matrix one may use the ‘horizontal’ one, which is the ordered product of the
L-operators along the vertical line.

The quantum inverse scattering method is based on the intertwining relation for the
L-operators:

Rαβ(λα, λβ)Lαk(λα, νk)Lβk(λβ, νk) = Lβk(λβ, νk)Lαk(λα, νk)Rαβ(λα, λβ) α �= β. (5)

The R-matrix Rαβ(λ, λ′) acts nontrivially in the direct product of the αth and βth horizontal
spaces and is given by

Rαβ(λ, λ
′) =



f (λ′, λ) 0 0 0

0 1 g(λ′, λ) 0

0 g(λ′, λ) 1 0

0 0 0 f (λ′, λ)




[αβ]

(6)

where the functions f (λ′, λ) and g(λ′, λ) are

f (λ′, λ) = sinh(λ− λ′ + 2η)

sinh(λ− λ′)
g(λ′, λ) = sinh 2η

sinh(λ− λ′)
. (7)

This is the so-called trigonometric R-matrix [11], which satisfies the Yang–Baxter equation

Rαβ(λα, λβ)Rαγ (λα, λγ )Rβγ (λβ, λγ ) = Rβγ (λβ, λγ )Rαγ (λα, λγ )Rαβ(λα, λβ)

α �= β �= γ. (8)

Due to relation (5) and commutativity of the matrix elements of the L-operator (3) at different
lattice sites one has the intertwining relation for the monodromy matrix

Rαβ(λα, λβ)Tα(λα)Tβ(λβ) = Tβ(λβ)Tα(λα)Rαβ(λα, λβ) α �= β. (9)

Equation (9) defines the commutation relations for the operators entering the monodromy
matrix. The complete list of these relations can be found, e.g., in [11]. For our purposes we
need only two of them:

A(λ)B(λ′) = f (λ, λ′)B(λ′)A(λ) + g(λ′, λ)B(λ)A(λ′)
B(λ)B(λ′) = B(λ′)B(λ).

(10)

As the generating vector in the space V , it is convenient to use the state either with all spins
up or with all spins down:

|⇑〉 = ⊗N
k=1|↑〉k = ⊗N

k=1

(
1

0

)
[k]

|⇓〉 = ⊗N
k=1|↓〉k = ⊗N

k=1

(
0

1

)
[k]

. (11)

These vectors are annihilated by the operators C(λ) and B(λ), respectively,

C(λ)|⇑〉 = 0 B(λ)|⇓〉 = 0 (12)

and they are eigenvectors of the operatorsA(λ) and D(λ),

A(λ)|⇑〉 = a(λ)|⇑〉 D(λ)|⇑〉 = d(λ)|⇑〉
A(λ)|⇓〉 = d(λ)|⇓〉 D(λ)|⇓〉 = a(λ)|⇓〉 (13)
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where the functions a(λ) and d(λ) are equal to

a(λ) =
N∏
k=1

sinh(λ− νk + η) and d(λ) =
N∏
k=1

sinh(λ− νk − η) (14)

respectively. The vectors 〈⇑| and 〈⇓|, dual to (11), are eigenvectors of the operatorsA(λ) and
D(λ) with the same eigenvalues as in equations (13) while instead of equations (12) one has

〈⇑|B(λ) = 0 〈⇓|C(λ) = 0. (15)

Consider vectors generated by the multiple action of operators B(λα) on the state |⇑〉:
B(λM) · · ·B(λ1)|⇑〉 M � N. (16)

The result of the action of the operatorA(λ) on vector (16) follows from commutation relations
(10):

A(λ)

M∏
α=1

B(λα)|⇑〉 = �

M∏
α=1

B(λα)|⇑〉 +
M∑
β=1

�βB(λ)

M∏
α=1
α �=β

B(λα)|⇑〉 (17)

where the coefficients� and�β are

� = a(λ)

M∏
γ=1

f (λ, λγ) �β = a(λβ)g(λβ, λ)

M∏
γ=1
γ �=β

f (λβ, λγ). (18)

The partition function ZN = ZN(λ1, . . . , λN ; ν1, . . . , νN ) of the model on an N × N

square lattice with DWBC is obtained by summation over the contributions of all possible spin
configurations. The contribution of each configuration is equal to the product of all vertex
weights of this configuration. In terms of QISM the partition function may be represented as

ZN =
(

N⊗
α=1

α〈↑|
)

⊗
(

N⊗
k=1

k〈↓|
)
TN(λN) · · · T1(λ1)

(
N⊗
k=1

|↑〉k
)

⊗
(

N⊗
α=1

|↓〉α
)
. (19)

The boundary conditions on the left and the right boundaries extract the operator B(λα) from
each matrix Tα(λα). The boundary conditions on the top (bottom) of the lattice correspond to
the vector |⇑〉 (〈⇓|), respectively. Hence, the partition function can be written in the form

ZN = 〈⇓|B(λN) · · ·B(λ1)|⇑〉. (20)

Due to relation (10) the order of operators B(λα) in the product is not essential.
The determinant representation for the partition function ZN was obtained in the papers

[17, 18] and has the form

ZN =
∏N
α=1

∏N
k=1 sinh(λα − νk + η) sinh(λα − νk − η)∏

1�α<β�N sinh(λβ − λα)
∏

1�k<j�N sinh(νk − νj )
detNZ. (21)

The entries of the matrix Z are given by

Zαk = φ(λα, νk) α, k = 1, . . . , N (22)

where the function φ(λ, ν) is

φ(λ, ν) = sinh 2η

sinh(λ− ν + η) sinh(λ− ν − η)
. (23)

The proof of determinant representation (21) based exclusively on commutation relations (10)
is given in section 4.
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3. Boundary correlation functions

In the present paper we consider two kinds of correlation functions describing the local state
probabilities at the boundary. The first correlation function describes the probability of the
absence of a vertical solid line between the (M + 1)th and Mth rows of the first column
and is known as ‘boundary spontaneous polarization’. In terms of QISM it is the one-point
correlation function of the local spin projector q1 = 1

2

(
1 − σ z1

)
on the spin-down state, and it

can be written as

G
(M)
N = Z−1

N 〈⇓|B(λN) · · ·B(λM+1)q1B(λM) · · ·B(λ1)|⇑〉. (24)

The second correlation function describes the probability that the solid line on the first column
turns to the left just on the Mth row,

H
(M)
N = Z−1

N 〈⇓|B(λN ) · · ·B(λM+1)q1B(λM)p1B(λM−1) · · ·B(λ1)|⇑〉 (25)

where p1 is the projector on the spin-up state, p1 = 1
2

(
1 + σ z1

)
. Since p1 + q1 = I , these

correlation functions are related to each other as follows:

G
(M)
N = H

(M)
N +H(M−1)

N + · · · +H(1)
N (26)

H
(M)

N = G
(M)

N −G
(M−1)
N . (27)

However, it is easier to calculate them from definitions (24) and (25) independently.
In this section we express the correlation functions of the model on an N × N square

lattice through the sum over partition functions of the models on (N − 1)× (N − 1) square
sublattices. We will call the corresponding formulae the ‘reduction formulae’. The derivation
of these formulae is based exclusively on commutation relations (10). Since G(N)

N = 1, in the
particular caseM = N the reduction formula forG(M)

N turns into the recursion relation for the
partition function. In the next section we will prove that determinant representation (21) is the
solution of this recursion relation. The determinant representation for the correlation functions
can then be obtained by substituting expression (21) in the reduction formulae, which makes
our algebraic approach self-contained.

To derive the reduction formulae for the correlation functions we rewrite them in a form
suitable for applying commutation relations (10). Let us decompose the monodromy matrix
Tα(λα) into the matrix product of two monodromy matrices in the αth space:

Tα(λα) = Tα2(λα)Tα1(λα). (28)

This decomposition of the monodromy matrix is known as the ‘two-site model’ [11]. In our
case we choose these matrices defined as follows:

Tα2(λα) = LαN(λα, νN) · · · Lα2(λα, ν2) =
(
A2(λα) B2(λα)

C2(λα) D2(λα)

)
[α]

Tα1(λα) = Lα1(λα, ν1) =
(
A1(λα) B1(λα)

C1(λα) D1(λα)

)
[α]

.

(29)

The matrix elements of Tα2(λ) commute with the matrix elements of Tα1(λ) since they are
operators that act nontrivially in different spaces. The entries of Tα1(λ) act nontrivially
in the first ‘vertical’ space and depend on the ‘vertical’ variable ν1, while the entries of
Tα2(λ) act nontrivially in the rest of the N − 1 ‘vertical’ spaces and depend on the ‘vertical’
variables ν2, . . . , νN . Each set of operators entering the monodromy matrices satisfies the
commutation relations given by (9) and, in particular, (10). It should be noted that the
generating vectors |⇑〉(|⇓〉) can be represented as the direct product of two generating vectors,
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e.g., |⇑〉 = |⇑2〉 ⊗ |⇑1〉, where |⇑2〉 = ⊗N
k=2|↑〉k and |⇑1〉 ≡ |↑〉1. The properties of both the

states |⇑2〉 (|⇓2〉) and |⇑1〉 (|⇓1〉) are the same as those of |⇑〉 (|⇓〉); see the previous section.
The eigenvalue of, e.g., operator A2(λ) on the state |⇑2〉 is

A2(λ)|⇑2〉 = a2(λ)|⇑2〉 a2(λ) =
N∏
k=2

sinh(λ− νk + η). (30)

The decomposition of the operatorsA(λ), B(λ), C(λ) andD(λ) follows from definitions (28),
(29) and (4). In particular, one has

B(λ) = A2(λ)B1(λ) + B2(λ)D1(λ). (31)

The operators B1(λ) and D1(λ) are the corresponding entries of the L-operator (3) and they
are given by

B1(λ) = σ−
1 sinh 2η D1(λ) = sinh

(
λ− ν1 − ησ z1

)
. (32)

Using formulae (31) and (32) one can reduce the problem of calculation of the scalar products
on the right-hand sides of expressions (24) and (25) to the problem of calculation of the scalar
products involving the operators A2(λ) and B2(λ) only. Now we are ready to derive the
reduction formulae for the correlation functions.

We start with the derivation of the reduction formula for the function H(M)
N since this

derivation is straightforward. Let us substitute expression (31) in (25) and calculate the scalar
product with respect to 〈⇓1| and |⇑1〉 using formula (32). We are left with the expression

H
(M)
N = Z−1

N sinh 2η
M−1∏
α=1

sinh(λα − ν1 − η)

N∏
α=M+1

sinh(λα − ν1 + η)

× 〈⇓2|B2(λN) · · ·B2(λM+1)A2(λM)B2(λM−1) · · ·B2(λ1)|⇑2〉. (33)

Applying (17) and taking into account (30), we reduce the scalar product in (33) to the sum
over scalar products that involve only the operators B2. Comparing these scalar products
with expression (20), one immediately gets the following formula for the correlation function
H
(M)

N :

H
(M)
N = Z−1

N sinh 2η
M−1∏
α=1

sinh(λα − ν1 − η)

N∏
α=M+1

sinh(λα − ν1 + η)

×
M∑
β=1

a2(λβ)
g(λβ, λM)

f (λβ, λM)

M∏
γ=1
γ �=β

f (λβ, λγ )ZN−1
({λα}Nα=1,α �=β ; {νk}Nk=2

)
. (34)

In the derivation of this formula we have used the fact that the functions f (λ′, λ) and g(λ′, λ)
defined in (7) satisfy the condition g(λ, λ)/f (λ, λ) = 1. This allows us to include the first
term arising in (17) into the sum over β.

Equation (34) expresses the particular boundary correlation function of the model on an
N ×N square lattice as the sum over partition functions of the models on (N − 1)× (N − 1)
square sublattices. It should be stressed that in the derivation of the formula we have used
only the algebra of operators A2(λ) and B2(λ) given by commutation relations (10).

Let us turn now to the correlation function G(M)
N defined by expression (24). First, we

substitute formulae (31) and (32) in (24). This gives

G
(M)
N = Z−1

N sinh 2η
M∑
β=1

β−1∏
α=1

sinh(λα − ν1 − η)

N∏
α=β+1

sinh(λα − ν1 + η)

× 〈⇓2|B2(λN) · · ·B2(λβ+1)A2(λβ)B2(λβ−1) · · ·B2(λ1)|⇑2〉. (35)
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To obtain the representation of the correlation function G(M)
N as the sum over the partition

functions of the models on (N − 1)× (N − 1) square sublattices one can substitute formula
(17) in expression (35), but then the double sum will appear in the resulting expression. To
represent the right-hand side of expression (35) as a single sum, as in formula (34), we choose
another way. In expression (35) we pick up the term which contains the operator A2 standing
furthest to the left among the operatorsB2, i.e. the term corresponding to β = M . Taking into
account formula (17) it is easy to see that this term contains the following contribution, which
corresponds to the first term on the right-hand side of (17):

〈⇓2|B2(λN) · · ·B2(λM+1)A2(λM)B2(λM−1) · · ·B2(λ1)|⇑2〉

= a2(λM)

M−1∏
γ=1

f (λM, λγ )〈⇓2|B2(λN) · · ·B2(λM+1)B2(λM−1) · · ·B2(λ1)|⇑2〉

+ other terms (36)

where the ‘other terms’ are the terms with scalar products involving the operator B2(λM).
Substituting equation (36) in (35) and applying formula (17) to the rest of the terms in (35),
we obtain that

G
(M)
N = Z−1

N

M∏
α=1

sinh(λα − ν1 − η)

N∏
α=M+1

sinh(λα − ν1 + η)

(
a2(λM) sinh 2η

sinh(λM − ν1 − η)

×
M−1∏
γ=1

f (λM, λγ )〈⇓2|B2(λN) · · ·B2(λM+1)B2(λM−1) · · ·B2(λ1)|⇑2〉

+ other terms

)
(37)

where the ‘other terms’ are again the terms, different to those in (36), with scalar products
involving the operator B2(λM). Thus, the contribution written explicitly in (37) is the only
possible one which does not contain the operator B2(λM) in the scalar product. Obviously,
this contribution is symmetric under the permutations of the elements in the set λ1, . . . , λM−1.
At the same time the correlation function G(M)

N is symmetric under the permutations of
the elements in the set λ1, . . . , λM , due to the commutativity of the operators B2(λα). It
follows immediately from these symmetry considerations that the whole expression given in
the parentheses in (37) is just the sum over the cyclic permutations of the elements in the
set λ1, . . . , λM of the term that is written explicitly on the right-hand side of equation (37).
Therefore, the following representation for the correlation functionG(M)

N is valid:

G
(M)
N = Z−1

N

M∏
α=1

sinh(λα − ν1 − η)

N∏
α=M+1

sinh(λα − ν1 + η)

×
M∑
β=1

a2(λβ) sinh 2η

sinh(λβ − ν1 − η)

M∏
γ=1
γ �=β

f (λβ, λγ )ZN−1
({λα}Nα=1,α �=β ; {νk}Nk=2

)
. (38)

The procedure described above is similar to the derivation of equation (17) from commutation
relations (10); see, e.g., [11].

The important point to be discussed now is the meaning of representation (38) atM = N .
Since the left-hand side of equation (38) is equal to one at M = N , it turns into the recursion
relation on the partition function. In this relation ZN is expressed through the sum over the
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partition functions ZN−1:

ZN
({λα}Nα=1; {νk}Nk=1

) = sinh 2η
N∑
β=1

N∏
α=1
α �=β

sinh(λα − ν1 − η)

N∏
k=2

sinh(λβ − νk + η)

×
N∏
γ=1
γ �=β

f (λβ, λγ )ZN−1
({λα}Nα=1,α �=β ; {νk}Nk=2

)
. (39)

This formula was obtained by slightly different technique in [24]. Due to the symmetry of
ZN with respect to the permutations of the variables {νk}Nk=1, one can rewrite this recursion
relation in a general form:

ZN
({λα}Nα=1; {νk}Nk=1

) = sinh 2η
N∑
β=1

N∏
α=1
α �=β

sinh(λα − νj − η)

N∏
k=1
k �=j

sinh(λβ − νk + η)

×
N∏
γ=1
γ �=β

f (λβ, λγ )ZN−1
({λα}Nα=1,α �=β ; {νk}Nk=1,k �=j

)
j = 1, . . . , N.

(40)

Relations (39) and (40) are valid for arbitrary values of the variables {λα}Nα=1 and {νk}Nk=1.
Iterating relation (40) N − 1 times, with the initial condition Z1 = sinh 2η, one gets the
answer as the sum over all permutations P of {λα}Nα=1 (cf (3.17) of [7])

ZN = (sinh 2η)N
∑
P

∏
1�α<β�N

f
(
λPα , λPβ

)
sinh

(
λPβ − να − η

)
sinh

(
λPα − νβ + η

)
. (41)

On the other hand, one can show that determinant representation (21) for the partition function
is the solution of recursion relation (40). The determinant solution of equation (40) leads to
the determinant representations for the boundary correlation functions.

4. Determinant representations for boundary correlation functions

We begin this section with the proof that determinant formula (21) for the partition function
solves recursion relation (40). The determinant representation for the boundary correlation
functions will follow then from reduction formulae (34) and (38), which can be viewed as
generalizations of the recursion relation for the partition function.

Let us give the proof for j = 1 in (40). This case is given by relation (39). For the other
values of j the proof is essentially the same. Consider the left-hand side of relation (39) which
is given by formula (21). The aim is to represent this expression in the form given by the
right-hand side of relation (39). Since ZN and ZN−1 are expressed through determinants of
N ×N and (N − 1)× (N− 1)matrices respectively, it is clear that relation (39) can be proved
developing a determinant of some N × N matrix by the first column. To apply this approach
one has to transform the determinant of the matrix Z in (21) first. Consider the function

gN(λ) =
∏N
γ=1 sinh(λγ − λ + 2η)∏N
k=1 sinh(λ− νk − η)

. (42)

For this function one has the identity

gN(λα) =
N∑
k=1


kφ(λα, νk) α = 1, . . . , N (43)
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where the function φ(λ, ν) is given by formula (23). Here the coefficients
k are independent
of α and are given as


k =
∏N
γ=1 sinh(λγ − νk + η)∏N
j=1
j �=k

sinh(νk − νj )
k = 1, . . . , N. (44)

Relation (43) is a short form of the identity∏N
γ=1
γ �=α

sinh(λγ − λα + 2η)

∏N
j=1 sinh(λα − νj − η)

=
N∑
k=1

∏N
γ=1
γ �=α

sinh(λγ − νk + η)

∏N
j=1
j �=k

sinh(νk − νj )

1

sinh(λα − νk − η)
(45)

which may be proved, e.g., by induction, see also [25]. Relation (43) may be considered as
the system of linear equations on the coefficients 
k with the right-hand side formed by the
vector gN(λα), α = 1, . . . , N . Therefore, by Cramer’s rule we obtain the connection formula
for the determinants

detNZ = 1


1

∣∣∣∣∣∣∣∣∣

gN(λ1) φ(λ1, ν2) . . . φ(λ1, νN)

gN(λ2) φ(λ2, ν2) . . . φ(λ2, νN)

...
...

. . .
...

gN(λN) φ(λN , ν2) . . . φ(λN , νN)

∣∣∣∣∣∣∣∣∣
N

(46)

where detNZ is given by formula (21). It is the transformed form of the determinant of the
matrix Z which can be developed by the first column. Hence, one gets

detNZ = 1


1

N∑
β=1

(−1)β−1gN(λβ)�
(β)

N−1 (47)

where�(β)

N−1 denotes the determinant of an (N − 1)× (N − 1) matrix

�
(β)

N−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ(λ1, ν2) . . . φ(λ1, νN)

...
. . .

...

φ(λβ−1, ν2) . . . φ(λβ−1, νN )

φ(λβ+1, ν2) . . . φ(λβ+1, νN)

...
. . .

...

φ(λN , ν2) . . . φ(λN , νN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
N−1

. (48)

Substituting determinant representation (21) for the partition functions ZN and ZN−1 on the
left- and right-hand sides of relation (39) respectively, and cancelling the resulting common
factors, one gets exactly equation (47). This proves that the determinant representation (21)
is the solution of recursion relation (39) for the partition function.

Let us turn now to the boundary correlation functions. Reduction formulae (34) and (38),
obtained in the previous section, express them through the sum over partition functions of the
models on (N − 1)× (N − 1) square sublattices. Using determinant representation (21) for
the partition function one can then obtain the determinant representations for the boundary
correlation functions.

Consider the correlation function H
(M)

N . Substituting expression (21) for ZN−1 in
reduction formula (34) and extracting a general multiplier out of the sum over β, one gets the
following expression:
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H
(M)
N = Z−1

N sinh 2η
M−1∏
α=1

sinh(λα − ν1 − η)

N∏
α=M+1

sinh(λα − ν1 + η)

×
∏N
α=1

∏N
k=2 sinh(λα − νk + η) sinh(λα − νk − η)∏

1�α<β�N sinh(λβ − λα)
∏

2�k<j�N sinh(νk − νj )

×
M∑
β=1

∏M−1
γ=1 sinh(λγ − λβ + 2η)

∏N
α=M+1 sinh(λγ − λβ)∏N

k=2 sinh(λβ − νk − η)
(−1)β−1�

(β)

N−1 (49)

where the quantity �(β)

N−1 is defined by expression (48). Clearly, the sum over β in formula
(49) is nothing but the determinant of some N × N matrix developed by the first column.
Only the M first entries in this column are not equal to zero, so there are M terms in the sum.
Taking this into account and using expression (21) for ZN , we finally obtain the following
determinant representation for the correlation function H(M)

N :

H
(M)
N = sinh 2η

∏N
k=2 sinh(ν1 − νk)∏M

α=1 sinh(λα − ν1 + η)
∏N
α=M sinh(λα − ν1 − η)

detNH
detNZ

(50)

where the entries of the N ×N matrix H are given by

Hα1 = hM(λα) Hαk = φ(λα, νk) k = 2, . . . , N. (51)

The function hM(λ) is equal to

hM(λ) =
∏M−1
γ=1 sinh(λγ − λ + 2η)

∏N
γ=M+1 sinh(λγ − λ)∏N

k=2 sinh(λ− νk − η)
. (52)

The points λM+1, . . . , λN are zeros of the function hM(λ); hence, the last N −M entries in
the first column of the matrix H are equal to zero. Note that the prefactor in (50) is, in fact,
equal to φ(λM, ν1)/hM(ν1 + η).

Consider now the correlation function G(M)
N . Substituting expression (21) for ZN−1 in

reduction formula (38) we arrive at the expression for the correlation function G(M)
N as the

sum of �(β)

N−1. This expression is similar to (49) for the functionH(M)
N . Finally, we obtain the

following determinant representation for the correlation functionG(M)

N :

G
(M)

N =
∏N
k=2 sinh(ν1 − νk)∏M

α=1 sinh(λα − ν1 + η)
∏N
α=M+1 sinh(λα − ν1 − η)

detNG
detNZ

(53)

where the entries of the N ×N matrix G are given by

Gα1 = gM(λα) Gαk = φ(λα, νk) k = 2, . . . , N. (54)

The function gM(λ) is equal to

gM(λ) =
∏M
γ=1 sinh(λγ − λ + 2η)

∏N
γ=M+1 sinh(λγ − λ)∏N

k=1 sinh(λ− νk − η)
. (55)

At M = N this function is exactly the function gN(λ) defined by formula (42). The points
λM+1, . . . , λN are zeros of the function gM(λ); hence, the last N − M entries in the first
column of the matrix G are equal to zero. By a direct check it is easy to be convinced that
representations (50) and (53) satisfy relations (26) and (27).

Determinant representations (50) and (53) for the boundary correlation functions H(M)

N

andG(M)
N are the main results of the present paper.
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5. The free fermion case

The ‘free fermion’ condition implies the following restriction on the vertex weights:

a2(λα, νk) + b2(λα, νk) = c2(λα, νk) α, k = 1, . . . , N. (56)

This equality is satisfied if we put η = iπ4 in (1). It is convenient to change the variables
λα → iλα , νk → iνk , and after the rescaling a → −ia, b → −ib, c → −ic one gets the
following parametrization of the vertex weights:

a(λα, νk) = sin
(
λα − νk + π

4

)
b(λα, νk) = sin

(
λα − νk − π

4

)
(57)

c(λα, νk) = 1.

Since under the condition η = iπ4 the determinant in equation (21) becomes the Cauchy
determinant, the partition function for the free fermion case can be evaluated explicitly:

ZN
({λα}Nα=1; {νk}Nk=1

) =
∏

1�α<β�N
cos(λα − λβ)

∏
1�k<j�N

cos(νk − νj ). (58)

For the correlation functionsH(M)
N and G(M)

N of the model in the free fermion case it is worth
using directly representations (34) and (38). Substituting formula (58) in representation (34),
one gets for the correlation functionH(M)

N ,

H
(M)

N =
∏M−1
α=1 sin

(
λα − ν1 − π

4

)∏N
α=M+1 sin

(
λα − ν1 + π

4

)
∏N
j=1 cos(νj − ν1)

×
M∑
β=1

∏N
j=2 sin

(
λβ − νj + π

4

)
∏N
α=M cos(λα − λβ)

M∏
α=1
α �=β

1

sin(λα − λβ)
. (59)

A similar formula can easily be written for the correlation functionG(M)
N .

Consider the homogeneous limit of the correlation functions in the free fermion case. The
homogeneous model is obtained by putting the variables in each set {λα}Nα=1 and {νk}Nk=1 to be
equal:

λ1 = · · · = λN ≡ λ ν1 = · · · = νN ≡ ν. (60)

Since now all the vertex weights depend only on the difference λ − ν, without loss of
generality one can take ν = −π

4 . Thus, we have the homogeneous model with the following
parametrization of the vertex weights:

a(λ) = cos λ b(λ) = sinλ c(λ) = 1. (61)

Note that the partition function ZN of the homogeneous model is independent of λ and is
equal to 1, ZN = 1, see (58).

The substitution νk = ν = −π
4 in expression (59) leads us to the following intermediate

expression for H(M)

N , when all νk are equal while all λα are still different:

H
(M)

N =
M−1∏
α=1

sin λα

N∏
α=M+1

cos λα

M∑
β=1

cosN−1 λβ∏N
α=M cos(λα − λβ)

M∏
α=1
α �=β

1

sin(λα − λβ)
. (62)
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The problem now is to obtain the limit of expression (62) when all λα tend to the same
value. For this purpose it is convenient to rewrite (62) in terms of rational functions instead of
trigonometric ones:

H
(M)

N = (
1 + u2

M

)M−1∏
α=1

uα

M∑
β=1

N∏
α=M

1

1 + uαuβ

M∏
α=1
α �=β

1

uα − uβ
(63)

where

uα = tanλα α = 1, . . . , N. (64)

Therefore, one should take the homogeneous limit in the set {uα}Nα=1:

uα → u α = 1, . . . , N. (65)

For the subset {uα}Nα=M we may simply put uM = uM+1 = · · · = uN = u, while for the subset
{uα}M−1

α=1 we parametrize uα as

uα = u− (M − α)ε α = 1, . . . ,M − 1 (66)

and the homogeneous limit then corresponds to the case of vanishing ε. Since the prefactor
of the sum over β in (63) is regular as ε → 0, one may put ε = 0 in this prefactor. Thus, for
H
(M)
N one gets

H
(M)
N = (1 + u2)uM−1

M∑
β=1

1

[1 + u2 − u(M − β)ε]N−M+1εM−1

M∏
α=1
α �=β

1

α − β

= (1 + u2)uM−1
M−1∑
β=0

(−1)M−1

(1 + u2 − uβε)N−M+1εM−1

M−1∏
α=1
α �=β

1

α − β
. (67)

Taking into account that
M−1∏
α=0
α �=β

1

α − β
= (−1)β

β!(M − β − 1)!
= (−1)β

(M − 1)!

(
M − 1

β

)
(68)

one obtains

H
(M)
N = (−1)M−1(1 + u2)

(M − 1)!uN−2M+2

M−1∑
β=0

(−1)β

[(1 + u2)u−1 − εβ]N−M+1εM−1

(
M − 1

β

)
. (69)

The sum over β in (69) in the limit ε → 0 becomes exactly the (M − 1)th derivative of a
function f (z) with respect to a variable z:

lim
ε→0

M−1∑
β=0

(−1)βf (z− βε)

εM−1

(
M − 1

β

)
= dM−1

dzM−1
f (z) (70)

where

f (z) = 1

zN−M+1
z = 1 + u2

u
. (71)

Hence, for the sum over β in (69) in the limit ε → 0 one gets

lim
ε→0

M−1∑
β=0

(−1)β

[(1 + u2)u−1 − εβ]N−M+1εM−1

(
M − 1

β

)
= (−1)M−1(N − 1)!

(N −M)!

( u

1 + u2

)N
. (72)
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Finally, substituting expression (72) in (69) and taking into account that u = tan λ,
we obtain the following expression for the correlation function H(M)

N of the homogeneous
six-vertex model in the free fermion case (61):

H
(M)
N =

(
N − 1

M − 1

)
(cos2 λ)N−M(sin2 λ)M−1. (73)

Similarly, for the correlation functionG(M)
N one gets

G
(M)

N =
M∑
K=1

(
N − 1

K − 1

)
(cos2 λ)N−K(sin2 λ)K−1. (74)

Obviously, connection formulae (26) and (27) are fulfilled by (73) and (74).
It is clear from the results obtained that the boundary correlation functions significantly

depend on both λ and M even in the simplest free fermion case. This dependence of the
function G(M)

N is of special interest in the thermodynamic limit when both N and M go to
infinity so that the variable x = M/N runs through the interval 0 < x < 1. Let us denote the
functionG(M)

N in this limit as G(x). Representing (74) in the form

G
(M)
N =

(
N − 1

M − 1

)
(sin2 λ)M−1(cos2 λ)N−M

2F1(1,−M + 1;N −M + 1; − cot2 λ) (75)

and using the integral representation for the hypergeometric function 2F1, one gets

G
(M)

N = (N − 1)!

(N −M − 1)!(M − 1)!
(sin2 λ)M−1(cos2 λ)N−M

×
∫ 1

0
dt (1 − t)N−M−1(1 + t cot2 λ)M−1 M = 1, . . . , N − 1. (76)

Applying the steepest descent method to representation (76) we obtain that G(x) is the
Heaviside step function:

G(x) = θ(x − sin2 λ) θ(ξ) =




1 if ξ > 0
1
2 if ξ = 0

0 if ξ < 0.

(77)

This result means that the arrows at the boundary column are ordered (frozen) in the
thermodynamic limit: all arrows are pointing down above the point x = sin2 λ, while below
all of them are pointing up.

6. Determinant representations in the homogeneous limit

In this section the homogeneous limit of determinant representations (50) and (53) for the
boundary correlation functions is considered in the general case. To obtain the homogeneous
model one should put all λα equal to λ and all νk equal to ν in the inhomogeneous model
(1). Without loss of generality one may also put ν = 0. Hence, the vertex weights of the
homogeneous six-vertex model are given by

a(λ) = sinh(λ + η) b(λ) = sinh(λ− η) c(λ) = sinh 2η. (78)

The procedure of taking the homogeneous limit for the partition function ZN has been
elaborated in the papers [17, 18]. In this limit, the singularities coming from the denominator
of expression (21) are cancelled by the zeros coming from the determinant since then all rows
and columns of the matrix Z tend to each other.
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It can be shown by Taylor expansion of the entries of the matrix Z that the partition
function of the homogeneous model is expressed through the double Wronskian:

ZN = detN Zhom

[φ(λ)]N 2 ∏N−1
n=1 (n!)2

(Zhom)αk = dα+k−2

dλα+k−2
φ(λ) (79)

where φ(λ) ≡ φ(λ, 0), namely,

φ(λ) = sinh 2η

sinh(λ + η) sinh(λ− η)
. (80)

Since the correlation functions have been expressed in equations (50) and (53) through
determinants, one may apply the approach described in detail in [18] to obtain the correlation
functions of the homogeneous model.

To apply the procedure given in [18] with minimal modifications, it is convenient to
consider the function G̃

(M)

N instead of G(M)
N , where

G̃
(M)

N (λ1, . . . , λN ; ν1, . . . , νN ) = G
(M)
N (λN, . . . , λ1; νN, . . . , ν1). (81)

Clearly, these functions are equal in the homogeneous limit. Comparing equations (53) and
(81) one can see that the function G̃

(M)

N may be written as

G̃
(M)

N =
∏N−1
k=1 sinh(νN − νk)∏N

α=N−M+1 sinh(λα − νN + η)
∏N−M
α=1 sinh(λα − νN − η)

detN G̃
detN Z (82)

where

G̃αk = φ(λα, νk) G̃αN = g̃M(λα) k = 1, . . . , N − 1 (83)

and the function g̃M(λ) is defined as

g̃M(λ) =
∏N
γ=N−M+1 sinh(λγ − λ + 2η)

∏N−M
γ=1 sinh(λγ − λ)∏N

k=1 sinh(λ− νk − η)
. (84)

The matrix G̃ differs from the matrix Z by the last column, and the first N −M entries in the
last column of the matrix G̃ are equal to zero, G̃N1 = · · · = G̃NN−M = 0.

Now, the homogeneous limit in the set {λα}Nα=1 can be easily found following [18].
Representing the differences λγ − λα in the expression for the quantity g̃M(λα) as
(λγ − λ) − (λα − λ), one may consider the differences λα − λ as independent variables.
In the limit λα → λ, α = 1, . . . , N, these variables tend to zero and it can be proved that the
entries in the last column of the matrix Z, after successive subtractions of the rows, become
the coefficients in the Taylor expansion of the function

ψ(ε) = (−1)N
(sinh ε)N−M sinhM(ε − 2η)∏N

j=1 sinh(ε + λ− νj − η)
(85)

at the point ε = 0. This solves the problem of taking the homogeneous limit in the set {λα}Nα=1.
The homogeneous limit in the set {νk}Nk=1 can be taken in the same manner as for the partition
function, with the only difference that there are no subtractions from the last column; one
should simply put all νk equal to ν = 0 in the entries of the last column.

As a result, one obtains the following determinant representation for the correlation
functionG(M)

N in the homogeneous limit:

G
(M)
N = (N − 1)!

[sinh(λ + η)]M [sinh(λ− η)]N−M
detNGhom

detNZhom
(86)
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where
(Ghom)αk = (Zhom)αk k = 1, . . . , N − 1

(Ghom)αN = − dα−1

dεα−1

{
(sinh ε)N−M [sinh(ε − 2η)]M

[sinh(ε + λ− η)]N

} ∣∣∣∣
ε=0

.
(87)

For the correlation functionH(M)

N in the homogeneous limit the following expression is valid:

H
(M)

N = (N − 1)! sinh 2η

[sinh(λ + η)]M [sinh(λ− η)]N−M+1

detN Hhom

detN Zhom
(88)

where

(Hhom)αk = (Zhom)αk k = 1, . . . , N − 1
(89)

(Hhom)αN = dα−1

dεα−1

{
(sinh ε)N−M [sinh(ε − 2η)]M−1

[sinh(ε + λ− η)]N−1

} ∣∣∣∣
ε=0
.

Formulae (86) and (88) generalize representation (79) for the partition function of the
homogeneous model, and they may be used for the investigation of the correlation functions
in the thermodynamic limit.

7. Conclusion

In the present paper the determinant representation for the one-point boundary correlation
functions of the six-vertex model with the domain wall boundary conditions is derived. For
the correlation functions HM

N (25) and G(M)
N (24) we have obtained representations (50) and

(53), which generalize the determinant representation for the partition function ZN . In these
formulae the correlation functions are expressed through the determinants of the N × N

matrices H and G, respectively. The matrices H and G differ from the matrix Z appearing
in representation (21) for the partition function by the first column only. The derivation of
representations (50) and (53) is based on reduction formulae (34) and (38) which have been
obtained in section 3 exclusively by means of the algebra of operators entering the monodromy
matrix.

In the free fermion case studied in section 5 we have obtained explicit (determinant-
free) formulae (73) and (74) for the boundary correlation functions HM

N and G(M)
N of the

homogeneous model. In the thermodynamic limit N,M → ∞ the function G(M)
N describing

the spontaneous polarization at the boundary turns into the function G(x) with x = M/N ,
0 < x < 1. We have found thatG(x) is just the Heaviside step function (77). The emergence
of the step function for the spontaneous polarization indicates the ‘freezing’ of the arrows at
the boundary in the thermodynamic limit. On the other hand, from the results of the paper [20]
we have found numerically that at the ice point, a = b = c = 1, the function G(x) exhibits
a similar behaviour, G(x) = θ(x − 1/2). The obtained determinant formulae (86) and (88)
may be used for the investigation of the boundary correlations in the thermodynamic limit in
the homogeneous model with arbitrary values of the vertex weights.

The step function behaviour of the boundary spontaneous polarization indicates the
existence of the analogue of the arctic circle theorem [21, 22]. To be more precise, we expect
that for the values −1 < cosh 2η < 1 the arrows are ‘frozen’ at the corners of the grid, while
inside the grid there is a region of ‘disorder’. To obtain the shape of the ‘disordered’ region
of the grid it is necessary to obtain an appropriate expression for the spontaneous polarization
not only at the boundary but also at an arbitrary point of the lattice. Hence, the problem of the
calculation of the correlation functions of the model deserves further investigation. We hope
that the approach described in sections 3 and 4 may appear to be productive in the derivation
of the correlation functions outside the boundary.
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